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Introduction

The purpose of this project is to utilize three algorithms for minimizing specific scalar functions of two vari-

ables f : R2 → R. Each algorithm takes an initial guess of the minimizer and outputs a K + 1 long sequence

{xk}K
k=0 ⊂ R2 which converges1 to the actual minimizer point x∗ ∈ R2. We then analyze the behavior of the

convergence from the sequences we obtain from Matlab. The functions we study are

f1(x, y) =
1
4

x4 − 1
3

x3 − 3x2 + 1 + y4

and

f2(x, y) = − exp(−x2 − y2).

The algorithms we will use are the following

1. Newton’s method for minimization (NM).

2. The method of steepest descent (SD).

3. Broyden’s method (BM).

Moreover, for each method we plot three figures, namely, iteration k vs root approximation (i.e., the approxi-

mation of the minimizer), x vs y components at iteration k, and iteration k vs f (xk).

We will give a brief explanation of our three methods in the next section.

Description of the Methods

Method 1. Newton’s Method for minimization is similar to Newton’s method for solving systems. Let x0 ∈ Rn be

our initial guess of a minimizer of f : Rn → R, so to use NM we consider the gradient ∇ f , and we

denote the Hessian of f by H f . Hence, if we seek to obtain a K + 1 long sequence of points (where x0 is

our initial guess), which converge to the actual minimizer x∗, we can find such sequence recursively by

the formula

xk+1 = xk − H−1
f (xk)∇ f (xk), 0 ≤ k ≤ K− 1.

It is important to know that NM has a descent direction, so our sequence terms converge to x∗.

1A finite sequence does not converge, so we are abusing our language here.
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Method 2. To use the method of steepest descent on a function f : Rn → R with initial guess x0 ∈ Rn, we calculate

∇ f . Since we seek to find a K + 1 long sequence of points that converge to the minimizer x∗ (where x0 is

our initial guess), we omit the stopping rule. Furthermore, instead of computing and minimizing at the

kth iteration the scalar function ϕ(tk) = f (xk − tk∇ f (xk)) over tk ≥ 0, we use the fixed value tk = 0.1 at

each iteration. Hence our SD algorithm becomes the recursive formula

xk+1 = xk − 0.1∇ f (xk), 0 ≤ k ≤ K− 1.

Note that our version of SD will not necessarily move in orthogonal steps because we modified it.

Method 3. To use Broyden’s method on f : Rn → R, we seek to solve the system ∇ f = 0 with initial guess

x0 ∈ Rn and initial n× n constant matrix D0. To obtain a K + 1 long sequence of points that converge to

the minimizer x∗ (where x0 is our initial guess), we apply the following algorithm at iteration k, where

0 ≤ k ≤ K− 1

Step 1. Compute xk+1 = xk − D−1
k ∇ f (xk).

Step 2. Set dk = xk+1 − xk, and yk = ∇ f (xk+1)−∇ f (xk).

Step 3. Update

Dk+1 = Dk +
(yk − Dkdk)dT

k

dT
k dk

.

It is important to note that BM does not necessarily go in a descent direction.

Analysis of Results

Our initial guess points for f1 and f2 are x0 = (2, 1) and x0 = (0.2, 0.4), respectively. Furthermore, we are going

to use K = 20 iterations for each function and each method in this project. Our Matlab function mat480project

takes inputs of the form (K,x0,nFunction,nMethod), where K is the number of iterations, x0 is an appropriate

x0, nFunction is 1 for f1 and 2 for f2, and nMethod is 1 for NM, 2 for SD, and 3 for BM. For each of the two

functions, we apply our three methods. This leaves us with the following six inputs

Input 1. NM for f1: mat480project(20,[2;1],1,1)

Input 2. SD for f1: mat480project(20,[2;1],1,2)

Input 3. NM for f1: mat480project(20,[2;1],1,3)

Input 4. NM for f2: mat480project(20,[0.2;0.4],2,1)

Input 5. SD for f2: mat480project(20,[0.2;0.4],2,2)

Input 6. BM for f2: mat480project(20,[0.2;0.4],2,3)

Next, we present and analyze our plots generated by Matlab for each input one by one.
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Figure 1: Input 1 Figure 1
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Figure 2: Input 1 Figure 2
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Figure 3: Input 1 Figure 3
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Figure 4: Input 2 Figure 1
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Figure 5: Input 2 Figure 2
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Figure 6: Input 2 Figure 3

0 2 4 6 8 10 12 14 16 18 20

iteration k

-15

-14

-13

-12

-11

-10

-9

-8

f(
x k,y

k)

Iteration k vs f(x k)

4



Figure 7: Input 3 Figure 1
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Figure 8: Input 3 Figure 2
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Figure 9: Input 3 Figure 3
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Figure 10: Input 4 Figure 1
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Figure 11: Input 4 Figure 2
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Figure 12: Input 4 Figure 3
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Figure 13: Input 5 Figure 1
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Figure 14: Input 5 Figure 2
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Figure 15: Input 5 Figure 3
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Figure 16: Input 6 Figure 1
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Figure 17: Input 6 Figure 2
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Figure 18: Input 6 Figure 3
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We first analyze our results from using our algorithms with f1.

NM From figure 1, observe that the x values converged quickly to 3 after iteration 3, whereas the y values

converged quickly to 0 from the zeroth iteration. From figure 2, it is evident that the vectors approach

very quickly to x∗ after the 5th iteration. Figure 3 tells us that the f values increase quickly at the first

iteration, but then quickly decrease and approach to the minimum value, which we can only tell is

between -20 and -10.

SD Figures 4 and 6 suggest that the convergence is more steady, that is, our x and y values in our sequence

are closer together without making high jumps as in NM and clearly converge to (3, 0). Figure 6 in

particular shows steepest descent in action and it allows us to see a better approximation for f (x∗) than

NM (≈ −15). However, figure 5 does not display orthogonal steps; this is because of our constant value

tk in the algorithm.

BM Broyden’s method shows a more chaotic convergence, as figure 7 displays multiple jumps in the x and

y values, and figure 9 makes a jump in the f values up to over 10000, and quickly goes back to around

zero, which does not allow us to make a confident approximation of f (x∗). We can see from figure 8 that

the vectors of our sequence go around x∗ for a while and eventually get very close to the minimizer.

Secondly, we present the analysis for the methods applied to f2.

NM From figure 10, it is clear that our x and y values both approach to 0 very rapidly after iteration 2. Also,

figure 12 clearly tells us that eventually our minimum value f (x∗) approaches -1. Our approximate

vectors in figure 11 converge and all lie on the same line.

SD Our SD figures display a rather aesthetic behavior of convergence. Figures 13 and 15 suggest that the rate

of convergence of our x and y values as well as f (xn) is similar to that of e−t. Furthermore, the vectors

in figure 14 approach to the origin from only one direction along a line.

BM Our Broyden’s method plots look very similar to NM for this function. Recall that for f1 BM displayed

a more chaotic behavior of convergence. For the current input, BM has a very steady convergence after

iteration 2.

We end this section by taking a look at an additional function f3 defined by

f3(x, y) =
x

log x
+

∫ 2y

0

sin t
t

dt.

The first reason I picked this function is because I am obsessed with x
log x because it represents the approximate

number of primes up to x for large x, and the antiderivative of the sinc function sin t
t does not exist. The second

reason is that if I pick x0=[3;3], then x has to approach the local minimizer of x
log x , namely e, and 2y has to

approach the local minimizer of the integral
∫ 2y

0
sin t

t dt, namely 2π (so y has to approach π). Therefore, we will

study the following additional inputs using f3

Input 7. NM for f3: mat480project(20,[3;3],3,1)

Input 8. SD for f3: mat480project(20,[3;3],3,2)

Input 9. BM for f3: mat480project(20,[3;3],3,3)

where nFunction = 3 corresponds to the function f3. For instance, consider the following plots generated by

Matlab.
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Figure 19: Input 7 Figure 1
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Figure 20: Input 7 Figure 2
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Figure 21: Input 7 Figure 3
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Figure 22: Input 8 Figure 1
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Figure 23: Input 8 Figure 2
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Figure 24: Input 8 Figure 3
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Figure 25: Input 9 Figure 1
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Figure 26: Input 9 Figure 2
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Figure 27: Input 9 Figure 3
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We now analyze our results for f3.

NM After iteration 2, figure 19 and 20 tell us that x and y approach to e and π quickly. From figure 21, we can

clearly see that the minimum f value is around 4.136.

SD Steepest descent yet again shows us a clear harmonious pattern of convergence in figures 22 to 24. How-

ever, the convergence is slower than NM because in figure 22, x gets above 2.85 and y is barely above 3.1,

which are worse approximations than NM (contrast with figure 19). Also, the approximation for f (x∗)
is worse than NM, namely 4.141.

BM From figure 25 and 26, BM goes in small jumps but eventually shows a convergence faster than SD. Figure

27 gives the same good approximation as NM. Observe that, even though our inputs for this function

is K=20, our plots only display 12 iterations. This is because our algorithm eventually gets matrices Dk

that are not invertible, so I included M(:,13) in my code (see Appendix) to obtain the x and y values

calculated at the last iteration. Here is what I got

ans = [2.7183;3.1416]

which is a number very close to x∗ = (e, π).

Conclusion

For the functions considered in this paper, the convergence of our sequences in BM are always as good as

those obtained from NM. However, BM sometimes displays chaotic looking steps in the xy plane (see figure

8) and at other times it has a precision issue due to its more complicated algorithm and the higher number

of operations involved, so we could end up obtaining fewer iterations than intended (see figures 25 and 27).

On the other hand, SD has very smooth patterns of convergence (see figures 13 to 15 and 22 to 24). The only

issue is that it performs a slower convergence than NM. Therefore, NM wins in clear pattern and convergence

speed, whereas SD clearly wins in smooth convergence, so my preferred method is NM.
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Appendix

Figure 28: Source Code

1 funct ion mat480pro ject (K, x0 , nFunction , nMethod )
2 %%%%%%%%%%%%%%%%%%%%%mat480pro ject%%%%%%%%%%%%%%%%%%%%%%%%%%
3 %Inputs
4 %K = number of i t e r a t i o n s
5 %x0 = i n i t i a l 2x1 vec tor
6 %nFunction = 1 f o r the polynomial , 2 f o r the exponent ia l
7 %nMethod = 1 f o r NM, 2 f o r SD , 3 f o r BM
8 %Outputs three p l o t s
9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10 syms x y
11 %Choose Function
12 i f nFunction == 1
13 f ( x , y ) = (1/4) * x . ^4 - (1/3) * x . ^3 - 3* x . ^2 + 1 + y . ^4;
14 e l s e i f nFunction == 2
15 f ( x , y ) = - exp ( - x . ^2 - y . ^2) ;
16 e l s e i f nFunction ==3
17 syms t
18 f ( x , y ) =x/log ( x ) + i n t ( s i n ( t ) /( t ) , 0 , 2 * y ) ;
19 end
20
21 %Hessian , gradient , D0
22 H( x , y ) = [ d i f f ( f , x , 2 ) , d i f f ( f , x , y ) ; d i f f ( f , x , y ) , d i f f ( f , y , 2 ) ] ;
23 G( x , y ) = [ d i f f ( f , x ) ; d i f f ( f , y ) ] ;
24 D = [ 1 , 0 ; 0 , 1 ] ;
25 M = zeros ( 2 ,K+1) ; %the x & y values are s tored here
26 M( 1 , 1 ) = x0 ( 1 ) ; M( 2 , 1 ) = x0 ( 2 ) ;
27
28 %Choose Method
29 i f nMethod == 1 %Use Newton ' s
30 f o r j = 1 :K
31 Hinv = inv (H(M( 1 , j ) ,M( 2 , j ) ) ) ;
32 M( : , j +1) = M( : , j ) - Hinv *G(M( 1 , j ) ,M( 2 , j ) ) ;
33 end
34 e l s e i f nMethod == 2 %Use S t e e p e s t Descent with tk= . 1
35 f o r j = 1 :K
36 M( : , j +1) = M( : , j ) - 0 . 1 *G(M( 1 , j ) ,M( 2 , j ) ) ;
37 end
38 e l s e i f nMethod == 3 %Use Broyden ' s
39 f o r j = 1 :K
40 M( : , j +1) = M( : , j ) - inv (D) *G(M( 1 , j ) ,M( 2 , j ) ) ;
41 d = M( : , j +1) - M( : , j ) ;
42 y = double (G(M( 1 , j +1) ,M( 2 , j +1) ) - G(M( 1 , j ) ,M( 2 , j ) ) ) ;%we use double here because i t improves the p r e c i s i o n f o r f2
43 D = D + ( y - D*d ) *d ' / ( d ' * d ) ;
44 end
45 end
46 M( : , 1 3 )
47 %p l o t s
48 f i g u r e ( 1 )
49 p l o t ( 0 : K,M( 1 , 1 : (K+1) ) , ' . - r ' , 0 :K, M( 2 , 1 : (K+1) ) , ' . - b ' ) ;
50 legend ( ' x approximation ' , ' y approximation ' ) ;
51 x l a b e l ( ' i t e r a t i o n k ' ) ; y l a b e l ( ' component value ' ) ;
52 t i t l e ( ' I t e r a t i o n k vs Root Approximations ' ) ;
53 f i g u r e ( 2 )
54 p l o t (M( 1 , 1 : (K+1) ) ,M( 2 , 1 : (K+1) ) , ' -o ' ) ;
55 x l a b e l ( ' x component ' ) ; y l a b e l ( ' y component ' ) ;
56 t i t l e ( ' I t e r a t e s x and y ' ) ;
57 f i g u r e ( 3 )
58 p l o t ( 0 : K, f (M( 1 , 1 : (K+1) ) ,M( 2 , 1 : (K+1) ) ) , ' . - ' ) ;
59 x l a b e l ( ' i t e r a t i o n k ' ) ; y l a b e l ( ' f ( x_k , y_k ) ' ) ;
60 t i t l e ( ' I t e r a t i o n k vs f ( x^k ) ' ) ;
61 end
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