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Abstract

We study the delayed logistic equation N′ = rN(1 − N(t − τ)/K) and seek to determine the
stability of the fixed point N∗ = K. After applying convenient transformations we use Matlab to
generate various solution plots and observe that a change of stability occurs when rτ is somewhere
near 1.6. The problem becomes equivalent to studying the stability of our new equation u′ =
−λ(u + 1)u(x − 1), where λ = rτ, at the fixed point u∗ = 0. Furthermore, we linearize our
transformed equation to verify such change in stability exists and conclude that it occurs when
the values of our parameter λ changes at π/2. The solutions to our initial equation are stable for
λ ∈ (0, π/2), eventually periodic for λ = π/2, and unstable for λ ∈ (π/2, ∞).

Introduction

The continuous logistic equation was published in 1838 by Pierre Verhulst, and it is used for popula-
tion models because it implements a population-limiting parameter K, called the carrying capacity,
which makes it a more convenient and realistic equation to use than the simpler exponential growth
model. The logistic equation is given by

dN
dt

= rN(1− N
K
) (1)

where N = N(t) is the population at time t, r > 0 is the growth rate, and K > 0 is the carrying
capacity.
However, if we intend to go a step further and fashion a yet more realistic population model, we
may introduce a delay to equation (1). This is often necessary because it has been observed that
in some population and other biological models the rate of change of the population does not only
depend on the present time population data but also in the population data at some point of the past
because the process of reproduction is not always instantaneous. In other words, the rate of change
of a population sometimes depends on the number of individuals of a past generation.
We introduce the delay by making the per capita growth rate N′/N of equation (1) depend on the
value N(t− τ) instead of N(t), where τ > 0 represents the delay. Hence, we modify equation (1) to
the delayed logistic equation

dN(t)
dt

= rN(t)
(

1− N(t− τ)

K

)
(2)

where τ > 0 is the delay. The equation above was proposed by G. Evelyn Hutchinson in 1948.
The objective of this project is to study the behavior of solutions of equation (2) and to explore the
stability of the fixed point N∗ = K of the delayed differential equation.

1



Discussion and Results

To study the solutions of equation (2), we write it in dimensionless form by using the transformations
y(x) = N(t)/K and x = t/τ. With this in mind, observe that

dy
dx

=
d

dx
[N(t)/K] =

d
dt
[N(t)/K]

dt
dx

=
d
dt
[N(t)/K]

d(xτ)

dx
=

τ

K
dN(t)

dt
. (3)

Moreover, since N(τx) = Ky(x) we have

N(t− τ) = N(τx− τ) = N[τ(x− 1)] = Ky(x− 1). (4)

Substituting (3) and (4) into (2) we obtain K
τ

dy
dx = rKy(x)(1− Ky(x− 1)/K), or equivalently

dy
dx

= λy(1− y(x− 1)) (5)

where λ = rτ > 0. Note that our fixed point N∗ = K has been transformed to y∗ = 1. From now on,
we will consider the initial history y = 1/2 on−1 ≤ x ≤ 0 for the DDE in (5). Let us attempt to solve
equation (5) by the method of steps. On the interval [0, 1] our DDE becomes the ODE

dy
dx

=
λy
2

with initial condition y(0) = 1/2. Thus, our solution for 0 ≤ x ≤ 1 is y = 1
2 e

λ
2 x. On the interval [1, 2]

we have the ODE
dy
dx

= λy[1− 1
2

e
λ
2 (x−1)]

with initial condition y(1) = 1
2 e

λ
2 . Hence, by separation of variables we obtain the solution

y =
1
2

e1− λ
2 exp(λx− e

λ
2 (x−1))

for 1 ≤ x ≤ 2. Observe that the higher the intervals we attempt to solve our DDE exactly, the more
complicated and overwhelming the method of steps becomes since we need to integrate the previous
solution over x by separation of variables, which leads us to a series of nested exponential functions
that need to be integrated. This is a difficult problem, so we shall study the behavior of the solutions
of the DDE in (5) with the aid of Matlab. Consider the following solution plots of our DDE in equa-
tion (5) for various values of λ between 1 and 2.2.
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We now begin to study the stability of y∗ = 1, a fixed point of (5). Observe that the plots suggest the
stability of the solutions of equation (5) change at some value of λ, which we call λ0, close to 1.6 from
stable to unstable. We make yet another substitution u = y− 1 to help us linearize (5) around y∗ in
order to determine the bifurcation value λ0. Our substitution yields

du
dx

= −λ(u(x) + 1)u(x− 1) (6)

but since we are creating perturbations near y∗ = 1, we are close to u∗ = 0. Thus u(x) + 1 ≈ 1, so (6)
becomes

du
dx

= −λu(x− 1). (7)

Observe that (7) is the linearization of our DDE (6) around the fixed point u∗ = 0; this will help us
find the bifurcation value λ0 of equation (5) at y∗ = 1. To explore the stability of y∗ we suppose the
ODE in (7) has solutions of the form

u = ezx (8)

where z ∈ C. Since y∗ is stable when the real part of z is negative, we will let z = a + bi, where
a, b ∈ R and seek for the λ-values where a changes from negative to positive. That is, first we
substitute (8) in (7) to get zezx = −λezxe−z. This yields the characteristic equation

z = −λe−z (9)

and in terms of its real and imaginary parts, (9) becomes

a + bi = −λe−a(cos b− i sin b). (10)
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From (10) we can extract the real and imaginary parts and obtain the following two equations

a = −λe−a cos b (11)

b = λe−a sin b. (12)

To find where a changes sign from negative to positive, we set a = 0 in the two equations above.
This yields

0 = −λ cos b (13)

b = λ sin b. (14)

Since λ > 0, equation (13) yields bn = π/2 + nπ for n ∈ Z as the solutions for b. These in turn make
equation (14) become λn = (−1)nbn. Since some of the λn-values repeat for some n and they also are
positive, it suffices to simply take the even nonnegative values of n into consideration. Also, we must
only use the smallest solution for b since it is what dictates the behavior of the real and imaginary
parts of z over the rest of the b values because it is the one that occurs first relative to λ, which is
taken as a changing parameter. For instance, we only consider b0 = π/2. That is, we are interested
in the point P0 = (λ0, a0, b0) = (π/2, 0, π/2). The following theorem will help us with our theory.

Theorem. (A version of the implicit function theorem) Let F(λ, a, b) =

[
f (λ, a, b)
g(λ, a, b)

]
be a function such

that both f , g : R3 → R are continuously differentiable, and let P0 = (λ0, a0, b0) ∈ R3 be fixed such that

F(P0) =

[
0
0

]
. Define the Jacobian matrix

Ja,b =

[
∂ f
∂a

∂ f
∂b

∂g
∂a

∂g
∂b

]

and suppose that Ja,b(P0) is invertible. Then there exists a unique continuously differentiable implicit function

G(λ) =

[
a(λ)
b(λ)

]
and open sets U, V such that G : U → V where U ⊆ R and V ⊆ R2 are open, λ0 ∈ U,

(a0, b0) ∈ V, and F(λ, G(λ)) =

[
0
0

]
for all λ ∈ U. Moreover, we can obtain the derivatives of a and b in

implicit form whenever Ja,b is nonsingular from the equation[ da
dλ
db
dλ

]
= −J−1

a,b (λ, a, b)

[
∂ f
∂λ
∂g
∂λ

]
.

We will use our theorem to show that there exist continuous parametrized implicit functions a(λ)
and b(λ) which satisfy equations (11) and (12) for all λ > 0. Define the functions

f (λ, a, b) = −λe−a cos b− a

g(λ, a, b) = λe−a sin b− b

and note that they are continuously differentiable everywhere including all positive values of λ. At
P0 = (π/2, 0, π/2), we have f (P0) = g(P0) = 0. Furthermore, the Jacobian matrix Ja,b is

Ja,b =

[
λe−a cos b− 1 λe−a sin b
−λe−a sin b λe−a cos b− 1

]
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and det(Ja,b) = (λe−a cos b − 1)2 + (λe−a sin b)2 is only zero when a = log λ. Hence, Ja,b(P0) is
invertible, so by our theorem there exist unique continuously differentiable implicit functions a(λ)
and b(λ) for λ > 0 such that f (λ0, a(λ0), b(λ0)) = g(λ0, a(λ0), b(λ0)) = 0, and satisfy equations (11)
and (12) for all λ > 0. Furthermore, our theorem allows us to compute the implicit derivative

da
dλ

=
λe−a − cos b
ea det(Ja,b)

. (15)

In the λ-a plane, a(λ) passes through (λ0, a0) = (π/2, 0) with a positive derivative da
dλ

∣∣
P0

= π
2 . Since

a(λ) is unique and has a continuous derivative, its graph lies bellow the curve a = log λ, that is,
for all λ > 0 we have a < log λ. It follows from the latter inequality that λe−a > 1 ≥ cos b, then
λe−a − cos b > 0 for all λ > 0, so the derivative in (15) is always positive. Therefore, a(λ) is always
increasing.
We may conclude the following from our analysis

1. If λ ∈ (0, π/2), the real part of z in equation (8) is always negative, so the fixed point y∗ = 1 of
our DDE in (5) is stable.

2. If λ ∈ (π/2, ∞), the real part of z in equation (8) is always positive, so the fixed point y∗ = 1 of
our DDE in (5) is unstable.

3. If λ = π/2, the real part of z in equation (8) is zero, so the solution eventually has periodic
oscillations around the fixed point y∗ = 1 of our DDE in (5).

The method to obtain our last conclusion is we consider the plot of the solution of (5) for λ = 0,
which we show bellow.
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Observe that around y∗ = 1 the oscillations of the solution appear to eventually have a steady ampli-
tude. In reality an extra decrease in amplitude occurs in every plot presented in this paper because
of the damping effect created by both the dde23 Matlab function and the fact that we neglected the
nonlinear term in equation (6).
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Source Codes

This is the Matlab code which generates our seven plots for 1 ≤ λ ≤ 2.2. The code that generates the
plot for λ = π/2 is very similar.

1 function delayedlogistic
2 %This function solves and plots the solution of the logistic DDE
3 % dy/dx = lambda*y(x)*(1-y(x-1))
4 %for various values of lambda with intial history s=0.5 on -1\leq x\leq 0
5 for lambda=1:0.2:2.2
6 sol = dde23(@ldde,1,@history,[0,30]);
7 figure;
8 plot(sol.x,sol.y)
9 xlabel('Dimensionless time x');

10 ylabel('y');
11 title(['\lambda=',num2str(lambda)])
12 end
13

14 function s = history(x)
15 s=1/2;
16 end
17

18 function dydx= ldde(x,y,z)
19 ydelay = z;
20 dydx = lambda*y*(1-ydelay);
21 end
22

23 end
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