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Abstract

The purpose of this paper is to derive the equations of motion of the inverted pendulum problem
(see Figure 1) Ẋ = AX + bu and to find the appropriate control u = −KX, which allows the
pendulum to remain upright on the interval 0 ≤ t ≤ 5. To find this K we use Ackermann’s
formula with eigenvalues −2 ± 2

√
3i,−10, and −10. We plot the solutions of our differential

equation in Matlab and find that the pendulum indeed remains in upright position at the end of
our time interval.

Introduction

Consider an inverted pendulum of mass m attached to a cart through a rod of length L and moment
of inertia I. The cart of mass M is being pushed by an external force u, whose purpose is to keep the
pendulum upright. Refer to figure 1 to see an illustration of the problem being studied here.

Figure 1: The Inverted Pendulum

The horizontal distance of the pendulum (and, thus, the cart’s) from its stability point (where it is
upright) is denoted by x, and the angle between the rod and the axis of symmetry of the pendulum
is θ. We now derive the equations of motion using the Lagrangian

L = T −V (1)

where T is the kinetic energy of the system and V is the potential energy of the system. The motion
of the cart and the pendulum, as well as the rotational motion of the rod add kinetic energy to the
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system, namely

T =
1
2

mv2
m +

1
2

Mv2
M +

1
2

Iω2 (2)

where vm is the tangential speed of the pendulum, vM is the speed of the cart, and ω is the angular
speed of the rod. Furthermore, the potential energy of the system is only gravitational, where the
hinge that connects the rod and the cart is taken as the zero point, that is

V = mgL cos θ. (3)

Observe that the cart only has horizontal motion xM = x, whereas the pendulum moves along two
directions, namely, xm = x + L sin θ and ym = L cos θ. Hence, we obtain the following equations

vM = ẋM = ẋ

ẋm = ẋ + Lθ̇ cos θ

ẏm = −Lθ̇ sin θ.

The tangential speed of the pendulum is given by v2
m = ẋ2

m + ẏ2
m, so from the equations above we get

v2
m = (ẋ + Lθ̇ cos θ)2 + (−Lθ̇ sin θ)2 = ẋ2 + 2Lẋθ̇ cos θ + L2θ̇2.

Using our results above, along with the fact that ω = θ̇, and substituting them in (2) and (3), and
then in (1), we obtain our Lagrangian

L =
1
2
(m + M)ẋ2 + mLẋθ̇ cos θ +

1
2
(mL2 + I)θ̇2 −mgL cos θ. (4)

We will use the Euler-Lagrange equation of the Lagrangian L(qi, q̇i; t), for a coordinate qi, and t is the
independent time variable, namely (

d
dt

∂

∂q̇i
− ∂

∂qi

)
L = Di (5)

where Di is the dissipation of the coordinate qi. We consider our coordinates to be q1 = x and q2 = θ.
Observe that from (4) and considering that u is a non-conservative force, we get

∂L
∂ẋ

= (m + M)ẋ + mLθ̇ cos θ

d
dt

∂L
∂ẋ

= (m + M)ẍ + mLθ̈ cos θ −mLθ̇2 sin θ

∂L
∂x

= 0

D1 = u.

Hence, the Lagrangian method (5) with q1 = x gives us

(m + M)ẍ + mLθ̈ cos θ −mLθ̇2 sin θ = u. (6)

Furthermore, applying (5) to (4) with q2 = θ and observing that tension is a restoring force yields

∂L
∂θ̇

= mLẋ cos θ + (mL2 + I)θ̇

d
dt

∂L
∂θ̇

= mLẍ cos θ −mLẋθ̇ sin θ + (mL2 + I)θ̈

∂L
∂θ

= −mLẋθ̇ sin θ + mgL sin θ

D2 = 0.
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Hence, we obtain
mLẍ cos θ + (mL2 + I)θ̈ −mgL sin θ = 0. (7)

Let us assume θ is small and has slow oscillations, that is, cos θ ≈ 1, sin θ ≈ θ, and θ̇2 ≈ 0. For
instance, equations (6) and (7) reduce to our following equations of motion

(m + M)ẍ + mLθ̈ = u (8)

mLẍ + (mL2 + I)θ̈ −mgLθ = 0. (9)

Moreover, if we assume the rotational inertia of the pendulum rod is I = 0, and after some algebra
(8) and (9) become

θ̈ =
m + M

ML
gθ − 1

ML
u (10)

ẍ = −mg
M

θ +
1
M

u. (11)

Discussion and Results

Now that we have derived our equations of motion, we rewrite the system (10) and (11) using the
variables x1 = θ, x2 = θ̇, x3 = x, and x4 = ẋ. Hence

ẋ1 = θ̇ = x2

ẋ2 = θ̈ =
m + M

ML
gx1 −

1
ML

u

ẋ3 = ẋ = x4

ẋ4 = ẍ = −mg
M

x1 +
1
M

u.

Our system now takes the following form

Ẋ = AX + bu (12)

where X =
[

x1 x2 x3 x4
]T, b =

[
0 − 1

ML 0 1
M

]T, and

A =


0 1 0 0

m+M
ML g 0 0 0

0 0 0 1
−mg

M 0 0 0

 .

For this project, we use M = 2, m = 0.1, L = 0.5, and g = 9.81. Also, the initial conditions are in
the vector X(t = 0) =

[
0.01 −0.1 1 2

]T. If we let u = 0, then we have no controlling force,
so the pendulum cannot stay upright and falls. Also, by Newton’s first law, the cart should move
indefinitely. The system Ẋ = AX is solved with Matlab on the interval t ∈ [0, 5], and figures 2 and 3
are the solution curves for θ and x, respectively.
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Figure 2: Angle with the vertical θ(t) with u = 0.
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Figure 3: Horizontal Position x(t) with u = 0.
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Figure 2 suggests that our pendulum goes in circles clockwise indefinitely (assuming the surface of
the cart does not stop it), and figure 3 suggests the cart moves in the +x direction indefinitely. Hence,
we want to compute a row vector K such that u = −KX, which imposes to the system in (12) the
eigenvalues λ = −2± 2

√
3i each of multiplicity one, and λ = −10 of multiplicity two. Note that

these eigenvalues are all on the left half of the complex plane. To obtain K, we use Ackermann’s
formula

K =
[

0 0 0 1
] [

b Ab A2b A3b
]

ϕ(A) (13)

where ϕ(λ) is the characteristic polynomial of the system after pole-placement, namely

ϕ(λ) = (λ + 2 + 2
√

3i)(λ + 2− 2
√

3i)(λ + 10)2 = λ4 + 24λ3 + 196λ2 + 720λ + 1600.

Using our formula in (13) in Matlab gives the following value of K

K =
[
−298.1504 −60.6972 −163.0989 −73.3945

]
.

When we solve our system in (12) with u = −KX, we get the plots in figures 4 and 5.

Figure 4: Angle with the vertical θ(t) with u = −KX.
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Figure 5: Horizontal Position x(t) with u = −KX.
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Observe that the control force worked because figure 4 shows that θ eventually becomes stable mak-
ing an angle of zero with the vertical. Furthermore, figure 5 shows that the cart eventually becomes
stationary, i.e. x(t) stays very close to zero, so the pendulum remains upright.
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Source Codes

This is the Matlab code which solves and plots the system in (12) for both cases, that is, u = 0 and
u = −KX.

1 tspan = [0, 5];
2 in_val = [0.01, -0.1 ,1 ,2 ];
3

4 [t, X] = ode45(@pendulum, tspan, in_val);
5 x1 = X(:,1);
6 x3 = X(:,3);
7 figure(1)
8 plot(t,x1); xlabel('t'); ylabel('theta'); title('t vs theta');
9 figure(2)

10 plot(t,x3); xlabel('t'); ylabel('x'); title('t vs x');
11

12 function Xdot = pendulum(t,X)
13 M=2; m=0.1; L=0.5; g=9.81;
14 A = [ 0 1 0 0; (M+m)*g/(M*L) 0 0 0; 0 0 0 1; -m*g/M 0 0 0 ];
15 b = [0; -1/(M*L); 0; 1/M];
16 %
17 phi = A^4+24*A^3+196*A^2+720*A+1600*eye(4);
18 K = [0 0 0 1]*inv([b, A*b, A^2*b, A^3*b])*phi;
19 %
20 Xdot = A*X -(K*X)*b; %this line is just Xdot=A*X if u=0
21 end
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