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Abstract

In this project, we look at the equations of position of the orbits of two planets and calculate the
minimum distance between the planets at distinct times t1 and t2 using the method of steepest
descent. We will look at various values of the maximum error ε implemented in steepest descent,
and analyze how effective the method is with these values to conclude that it suffices to use ε =
0.01 to obtain a good approximation of the minimum distance between the planets.

Introduction

Consider the orbit of planet 1, which is defined by the equation[
x1(t)
y1(t)

]
=

[
cos(ϕ1) sin(ϕ1)
− sin(ϕ1) cos(ϕ1)

] [ P1−A1
2 + P1+A1

2 cos(t)√
P1A1 sin(t)

]
where A1 = 10, P1 = 2, and ϕ1 = π/8.

Also consider the orbit of planet 2, which is defined by the equation[
x2(t)
y2(t)

]
=

[
cos(ϕ2) sin(ϕ2)
− sin(ϕ2) cos(ϕ2)

] [ P2−A2
2 + P2+A2

2 cos(t)√
P2A2 sin(t)

]
where A2 = 4, P2 = 1, and ϕ2 = −π/7.

In this project, we seek to minimize the the distance between the two planets over their time
variables. In other words, we will minimize the function

dist(t1, t2) =
1
2
[(x1(t1)− x2(t2))

2 + (y1(t1)− y2(t2))
2]

over t1 and t2 on the restricted domain (t1, t2) ∈ D = [0, 2π]× [0, 2π].
The method of steepest descent will take an initial fixed point T1 ∈ D ⊂ R2 and a fixed maximum

error number ε > 0 such that if ||∇dist(T1)|| < ε, then we accept T1 as our value that minimizes dist
over D. Otherwise, we set d1 = −∇dist(T1), and minimize dist(T1 + d1λ) over λ ∈ [0, ∞). If we let
λ1 be our minimizer, then set T2 = T1 + λ1d1 and continue the process with our new fixed value T2
and until we have k iterations such that ||∇dist(Tk)|| < ε.

In this paper, we will analyze the method of steepest descent with the ε-values of 1, 0.5, 0.1, 0.01,
and 0.001, and look at the number of iterations k and computation time to test the efficiency of our
method and our code, which is implemented in Matlab.
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Discussion and Results

The following figure generated in Matlab helps us to visualize the orbits of both planets, each on the
time interval t ∈ [0, 2π].
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The Plots of Two Orbits
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Now, we will use the contour plot of our dist function over D = [0, 2π]2 in order to estimate a
good starting point T1 which we will implement in the steepest descent method.
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It looks like a good starting place is in the region between two contour lines of value 10, namely,
we will pick T1 = [5 3]T.

Let us see the output of our code when it is run with the epsilon values of 1, 0.5, 0.1, 0.01, and
0.001, respectively. The following italicized text are lines obtained when our code is run with the
above mentioned ε-values.
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With epsilon = 1.000, our t-values that minimize our dist function are t1 = 5.14 and t2 = 3.62. There were
8 iterations needed, and the computation time was 0.46 seconds. Our minimum distance is 0.74.

With epsilon = 0.500, our t-values that minimize our dist function are t1 = 5.21 and t2 = 3.85. There were
17 iterations needed, and the computation time was 0.99 seconds. Our minimum distance is 0.55.

With epsilon = 0.100, our t-values that minimize our dist function are t1 = 5.39 and t2 = 4.24. There were
65 iterations needed, and the computation time was 3.72 seconds. Our minimum distance is 0.38.

With epsilon = 0.010, our t-values that minimize our dist function are t1 = 5.49 and t2= 4.44. There were
199 iterations needed, and the computation time was 11.34 seconds. Our minimum distance is 0.36.

With epsilon = 0.001, our t-values that minimize our dist function are t1 = 5.50 and t2= 4.46. There were
351 iterations needed, and the computation time was 19.78 seconds. Our minimum distance is 0.36.

For instance, our results indicate that the t values that minimize the dist function are t1 = 5.50 and
t2= 4.46 (even though ε = 0.01 and ε = 0.001 give us the same estimated minimum distance, we use
the later because we trust our code gives us a better approximation of the t-values for the smaller
espilon value). We check this by looking at the following plot of the two orbits, but this time we use
stars to indicate the positions of our minimizing t-values.
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From the figure above, we conclude that our results estimate the minimal distance between the
planets very well. Observe that our actual minimum distance is 0.36 and it is computed by plugging
in our t1 and t2 in our actual distance function

ActualDistance(t1, t2) =
√

2 ∗ dist(t1, t2).

Furthermore, our results show that, if all we care about is to find the minimum distance between the
planets, it suffices to use ε = 0.01.

In my opinion, the biggest advantage of my code is that I did not have to compute the gradient
or any derivatives of dist because I used Matlab’s Symbolic Toolbox to compute them symbolically.
Please read the heavily commented source code in the next page to see how all the computations
were carried out in this paper.
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Source Code

1 % MAT 580 Project Source Code
2 % Diego Avalos
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 % Part 1
5 % In this part, we plot the two orbits X1 and X2 of the two planets.
6 % All parameters or constants labeled with j (j=1,2) are related to the
7 % orbit of planet j.
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9 % We first define our time points in our time vector.

10 time = linspace(0,2*pi);
11 % Next, we define some useful constants which define the shapes of the
12 % orbits.
13 A1 = 10; P1 = 2; theta1 = pi/8;
14 A2 = 4; P2 = 1; theta2 = -pi/7;
15 % We will use the following symbolic functions which will simplify the
16 % code:
17 % R(z) is a 2x2 rotation matrix,
18 % v(P,A,t) is a 2x1 vector.
19 syms z P A t
20 R(z) = [cos(z), sin(z); -sin(z), cos(z)];
21 v(P,A,t) = [0.5*(P-A)+0.5*(P+A)*cos(t); sqrt(P*A)*sin(t)];
22 % We now compute the orbits X1 and X2
23 X1 = R(theta1)*v(P1,A1,time); X2 = R(theta2)*v(P2,A2,time);
24 % We extract the inputs from X1 and X2 which represent the x and y
25 % positions of each planet.
26 x1 = X1(1,:); y1 = X1(2,:);
27 x2 = X2(1,:); y2 = X2(2,:);
28 % To conclude part 1, we plot both orbits on one graph.
29 figure(1)
30 plot(x1,y1,'k',x2,y2,'--k');
31 xlabel('x-axis'); ylabel('y-axis');
32 title('The Plots of Two Orbits');
33 legend('Orbit 1', 'Orbit 2');
34 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35 % Part 2
36 % In this part we plot contour lines of our dist(t1,t2) function.
37 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
38 % We first define the domain of our distance function that we seek to
39 % minimize. The domain is [0,2pi]^2.
40 [t1, t2] = meshgrid(time,time);
41 % Now we define our dist function in terms of t1 and t2. We use the
42 % functions x11, x22, y11, and y22 to simplify code.
43 x11 = cos(theta1)*(0.5*(P1-A1)+0.5*(P1+A1)*cos(t1))+...
44 sin(theta1)*sqrt(P1*A1)*sin(t1);
45 x22 = cos(theta2)*(0.5*(P2-A2)+0.5*(P2+A2)*cos(t2))+...
46 sin(theta2)*sqrt(P2*A2)*sin(t2);
47 y11 = -sin(theta1)*(0.5*(P1-A1)+0.5*(P1+A1)*cos(t1))+...
48 cos(theta1)*sqrt(P1*A1)*sin(t1);
49 y22 = -sin(theta2)*(0.5*(P2-A2)+0.5*(P2+A2)*cos(t2))+...
50 cos(theta2)*sqrt(P2*A2)*sin(t2);
51 dist = 0.5*( (x11-x22).^2+(y11-y22).^2 );
52 % To end part 2, we plot contour lines of dist(t1,t2).
53 figure(2)
54 contour(t1,t2,dist,'k','ShowText','on');
55 xlabel('t_1-axis'); ylabel('t_2-axis');
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56 title('Contour Lines of dist(t_1,t_2)');
57 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
58 % Part 3
59 % In this last part, we will minimize our dist function over its specified
60 % domain [0,2*pi]^2 using the steepest descent method.
61 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
62 % We first symbolically redefine our dist function (this time we call it
63 % 'Dist') in terms of the shorter functions X11, X22, Y11, Y22.
64 syms T1 T2
65 X11 = cos(theta1)*(0.5*(P1-A1)+0.5*(P1+A1)*cos(T1))+...
66 sin(theta1)*sqrt(P1*A1)*sin(T1);
67 X22 = cos(theta2)*(0.5*(P2-A2)+0.5*(P2+A2)*cos(T2))+...
68 sin(theta2)*sqrt(P2*A2)*sin(T2);
69 Y11 = -sin(theta1)*(0.5*(P1-A1)+0.5*(P1+A1)*cos(T1))+...
70 cos(theta1)*sqrt(P1*A1)*sin(T1);
71 Y22 = -sin(theta2)*(0.5*(P2-A2)+0.5*(P2+A2)*cos(T2))+...
72 cos(theta2)*sqrt(P2*A2)*sin(T2);
73 % Hence, the function we seek to minimize is the following
74 Dist(T1,T2) = 0.5*( (X11-X22).^2+(Y11-Y22).^2 );
75 % We now let Matlab compute the gradient of Dist symbolically.
76 GradDist(T1,T2) = [diff(Dist,T1); diff(Dist,T2)];
77 % This is the part where we implement the steepest descent method.
78 % Here we tweak our epsilon value. Some values that I will look closely are
79 % epsilon = 1, 0.5, 0.1, etc.
80 epsilon = 0.01;
81 % Now, from our contour plot in part 2, it seems that the following
82 % t-values are a good place to start our steepest descent.
83 minT1 = 5; minT2 = 3;
84 % We wish to count the number of iterations in our process and also monitor
85 % the computation time. The computation time may seem long, and it could be
86 % because I am making Matlab do a bunch of symbolic computations.
87 iterations=0;
88 tic;
89 % Let the steepest descent method begin! Observe that I am using the double
90 % function to make Matlab treat some values as doubles rather than symbolic
91 % values.
92 while norm(double(GradDist(minT1,minT2))) >= epsilon
93 % d is the negative of the gradient at the current point
94 d = -double(GradDist(minT1,minT2));
95 % We seek to minimize the single-variable function of lambda
96 % f(minT+lambda*d) over lambda >= 0. We first define the function Dist_L
97 % symbolically.
98 syms L
99 Dist_L = Dist(minT1+L*d(1), minT2+L*d(2));

100 % In order to use Matlab's fminsearch function we need to convert our above
101 % function into a function handle.
102 Dist_L = matlabFunction(Dist_L);
103 % We trust fminsearch to find our minimum lambda Lmin.
104 Lmin = fminsearch(Dist_L,0);
105 % Update our point and iteration number.
106 minT1 = minT1 + Lmin*d(1); minT2 = minT2 + Lmin*d(2);
107 iterations = iterations+1;
108 end
109 % Keep track of the computation time.
110 TimeElapsed=toc;
111 % Our actual minimum distance is
112 minDist = double(sqrt(2*Dist(minT1,minT2)));
113 % We store useful information in the info vector
114 info = [epsilon, minT1, minT2, iterations, TimeElapsed, minDist];
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115 % and state my conclusions as follows
116 fprintf(['With epsilon = %1.3f, our t-values that minimize our dist ',...
117 'function are t_1 = %2.2f and t_2 = %2.2f. There were %d ',...
118 'iterations needed, and the computation time was %3.2f seconds.'...
119 ' Our minimum distance is %2.2f.\n'], info);
120 % We are done with part 3. However, I want to add an additional graph which
121 % includes the orbits of both planets and marks the locations of the two
122 % planets where they are the closest (the points are those computed using
123 % steepest descent). This will allows us to visualize how well steepest
124 % descent works with different epsilon values.
125 % Here are the positions of both orbits at minimal distance
126 XMin1 = double(R(theta1)*v(P1,A1,minT1));
127 XMin2 = double(R(theta2)*v(P2,A2,minT2));
128 % And here's our handsome plot!
129 figure(3)
130 plot(x1,y1,'k',x2,y2,'--k',[XMin1(1) XMin2(1)],[XMin1(2) XMin2(2)],'k*');
131 xlabel('x-axis'); ylabel('y-axis');
132 title('The Plots of Two Orbits With Minimal Points');
133 legend('Orbit 1', 'Orbit 2','Minimal Points');
134 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
135 % Fin

The source code above may be downloaded from

https://github.com/mathydiego/mat580project/blob/master/mat580project.m
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